Saturday, September 29, 2007

Kapal Selam

Kapal selam adalah kapal yang bergerak di bawah permukaan air, umumnya digunakan untuk tujuan dan kepentingan militer. Sebagian besar Angkatan Laut memiliki dan mengoperasikan kapal selam sekalipun jumlah dan populasinya masing-masing negara berbeda. Selain digunakan untuk kepentingan militer, kapal selam juga digunakan untuk ilmu pengetahuan laut dan air tawar dan untuk bertugas di kedalaman yang tidak sesuai untuk penyelam manusia.
Jerman memiliki kapal selam yang populer dengan sebutan U-Boat yang merupakan ringkasan bagi Unterseeboot, mulai ditugaskan dalam Perang Dunia I sebagai sistem senjata yang mematikan bagi Angkatan Laut lawan terlebih-lebih pada Perang Dunia II. Sehingga terkenal dengan sebutan U-Class. Selain Jerman, negara yang populer menggunakan kapal selam sebagai kekuatan utama Angkatan Laut adalah Uni Soviet/Rusia
Salah satu pesawat selam yang lain adalah lonceng selam.Kapal selam militer digunakan untuk kepentingan perang atau patroli laut suatu negara, berdasarkan jenisnya setiap kapal selam militer selalu dilengkapi dengan senjata seperti meriam kanon, torpedo, rudal penjelajah / anti pesawat dan anti kapal permukaan, serta rudal balistik antar benua.

Sumber Bacaan : Wikipedia Indonesia.

Bom Hydrogen

Dalam fisika, fusi nuklir (reaksi termonuklir) adalah sebuah proses di mana dua inti atom bergabung, membentuk inti atom yang lebih besar dan melepaskan energi. Fusi nuklir adalah sumber energi yang menyebabkan bintang bersinar, dan Bom Hidrogen meledak. Senjata nuklir adalah senjata yang menggunakan prinsip reaksi fisi nuklir dan fusi nuklir.
Proses ini membutuhkan energi yang besar untuk menggabungkan inti nuklir, bahkan elemen yang paling ringan,
hidrogen. Tetapi fusi inti atom yang ringan, yang membentuk inti atom yang lebih berat dan neutron bebas, akan menghasilkan energi yang lebih besar lagi dari energi yang dibutuhkan untuk menggabungkan mereka -- sebuah reaksi eksotermik yang dapat menciptakan reaksi yang terjadi sendirinya.
Energi yang dilepas di banyak reaksi nuklir lebih besar dari reaksi kimia, karena energi pengikat yang mengelem kedua inti atom jauh lebih besar dari energi yang menahan elektron ke inti atom.Proses fusi paling penting di alam adalah yang terjadi di dalam bintang. Meskipun tidak melibatkan reaksi kimia, tetapi seringkali fusi termonuklir di dalam bintang disebut sebagai proses "pembakaran". Pada pembakaran hidrogen, bahan bakar netto-nya adalah empat proton, dengan hasil netto satu partikel alpha, pelepasan dua positron dan dua neutrino (yAda banyak reaksi fusi yang lain. Pada umumnya, reaksi fusi antara dua inti atom yang lebih ringan daripada besi dan nikel, melepaskan energi. Sedangkan, reaksi fusi antara dua inti atom yang lebih berat daripada besi dan nikel, menyerap energi yang mengubah dua proton menjadi dua netron)i. Ada dua jenis pembakaran hidrogen, yaitu rantai proton-proton dan siklus CNO yang keberlangsungannya bergantung pada massa bintang. Untuk bintang-bintang seukuran Matahari atau lebih kecil, reaksi rantai proton-proton mendominasi, sementara untuk bintang bermassa lebih besar siklus CNO yang mendominasi.
Sumber Bacaan : Wikipedia Indonesia.

Thursday, September 27, 2007

Hubble

Teleskop angkasa Hubble adalah sebuah teleskop luar angkasa yang berada di orbit bumi. Nama Hubble diambil dari nama ilmuwan terkenal Amerika, Edwin Hubble yang juga merupakan penemu hukum Hubble. Sebagian besar dari benda-benda angkasa yang telah berhasil diidentifikasi, adalah merupakan jasa teleskop Hubble.Pada tahun 1962, Akademi Sains Nasional Amerika merekomendasikan untuk membangun sebuh teleskop angkasa raksasa. Tiga tahun kemudian, tepatnya pada tahun 1977, kongres mulai menugumpulkan dana untuk proyek tersebut. Pada tahun yang sama pula, pembuatan teleskop angkasa Hubble segera dimulai.
Konstruksi teleskop Hubble, berhasil diselesaikan pada tahun
1985. Hubble di'angkasakan' untuk pertamakalinya pada tanggal 25 April 1990. Padahal, Hubble direncanakan untuk mulai dioperasikan pada tahun 1986. Tetapi, pengoperasiannya ditunda sementara karena bencana Pesawat Angkasa Challenger. Beberapa tahun setelah dioperasikan, Hubble mengirim gambar yang buram dan tidak jelas. Pada akhirnya NASA menemukan bahwa lensa pada teleskop tersebut bergeser sebanyak 1/50 ketebalan rambut manusia! Pada bulan Desember 1993, Pesawat Ulang-Alik Endeavor, dikirim untuk memodifikasi Hubble dengan menambahkan kamera baru untuk memperbaiki kesalahan pada lensa primernya.Pertama-tama, Hubble menangkap gambar, setelah diterima oleh teleskop, gambar tersebut akan diubah manjadi kode digital dan diradiasikan ke bumi dengan menggunakan antena yang mamiliki kemampuan mengirimkan data 1 juta bit per detik. Setelah kode digital diterima oleh stasiun di bumi, kode itu akan diubah menjadi foto dan spektrograf (sebuah instrumen yang digunakan untuk mencatat spektrum astronomikal).
Teleskop ini dapat berjalan 5 mil per detik. Hubble dapat berkeliling lebih dari 150 juta mil per tahun (± 241 juta kilometer)!Sejak pertama kali dioperasikan, teleskop ini dikendalikan dari
Goddard Space Flight Center di Greenbelt, Md.Hubble sangat banyak membantu para ilmuwan dalam mempelajari, mengobservasi dan memahami tentang jagad raya, objek luar angkasa (lubang hitam/black hole, galaksi, bintang), dll. Hubble adalah teleskop angkasa yang berhasil menemukan Xena, planet ke-10 beserta Gabrielle, satelitnya. Selain itu, Hubble juga bayak mengirimkan gambar-gambar yang menakjubkan tentang kejadian-kejadian di luar angkasa seperti; supernova, lahirnya bintang, tabrakan bintang, dll. Gambar sebuah galaksi raksasa tidak dikumpulkan dalam sehari saja. Galaksi Messier 101 (M-101) adalah salah satunya. Gambar galaksi ini merupakan gambar terbesar dan ter-detail dari sebuah galaksi spiral yang pernah dihasilkan oleh Hubble. Gambar galaksi ini terdiri dari 51 bagian. Pada misi kedua di bulan Februari 1997, astronot menggantu sebagian instrumen Hubble dan juga menambahkan selimut baru untuk menjaga Hubble agar tetap hangat. Advance Camera, dipasang pada tahun 2001. Kamera ini dapat mempertajam gambar dan memperlebar sudut pandang kamera. Setelah itu, Wide Field Camera 3, dan Cosmic Origins Spectrograph dipasang pada tahun 2003. Dua misi Hubble yang terakhir adalah pada tahun 2001 dan 2003. Hubble seharunya akan di non-aktifkan pada akhir tahun 2005. Tetapi, pada bulan Oktober 1997, NASA memutuskan untuk memperpanjang pengoperasian Hubble dari tahun 2005 ke 2010. Hubble akan digantikan oleh teleskop James Webb.

Sumber Bacaan : Wikipedia Indonesia.

Quark, partikel terkecil

Berawal dari Yunani, para filsuf saat itu berfilsafat mengenai penyusun terkecil setiap materi, Jazirah Arab yang disinggung oleh Hans sebagai pemegang "obor pengetahuan" berikutnya setelah Yunani, ilmu alkemi, reaksi nuklir yang "menceritakan" pada kita tentang keberadaan atom, proton dan neutron, sampai temuan saat ini mengenai satuan materi yang lebih kecil, yaitu quark.Nuklei atom tidak stabil dengan lebihan neutron mungkin melalui reput β−, di mana neutron dituker menjadi proton, elektron dan antineutrino jenis elektron (antizarah bagi neutrino):
Proses ini diselaras oleh interaksi lemah. Neutron bertukar kepada proton melalui pancaran
W− boson maya. Pada tahap quark, pancaran W− menukar quark jenis bawah kepada quark jenis atas, menukar neutron (satu quark atas dan dua quark bawah) kepada proton (dua quark atas dan satu quark bawah). W− boson maya kemudian reput kepada satu electron dan antineutrino.
Pereputan Beta sering kali berlaku pada hasil sampingan pembelahan kaya-neutron dalam logi nuklear. Neutron bebas turut reput melalui proses ini. Ini merupakan sumber jumlah tinggi elektron antineutrinos yang dihasilkan oleh reaktor pembelahan.Dalam sains fisikal, satu fasa adalah satu set keadaan sistem fisikal makroskop yang mempunyai komposisi dan ciri-ciri fisikal yang seragam (iaitu ketumpatan, struktur kristal, indeks bias dan lain-lain). Contoh fase yang paling biasa ialah pejal, cair dan gas. Selain itu, terdapat juga plasma, plasma quark-gluon, kondensasi Bose-Einstein, kondensasi fermion, partikel pelik (strange matter), hablur cair, superfluid dan supersolid, serta fase paramagnet dan feromagnet bahan bermagnet.
Fase juga kadangkala dipanggil keadaan padat, namun istilah ini boleh menyebabkan kekeliruan dengan keadaan termodinamik. Sebagai contoh, dua gas pada tekanan yang berlainan mempunyai keadaan termodinamika yang berbeda, tetapi keadaan fase yang sama.


Sumber Bacaan : Wikipedia Indonesia

Monday, September 24, 2007

Benda hitam

Dalam fisika, benda hitam (bahasa Inggris black body) adalah obyek yang menyerap seluruh radiasi elektromagnetik yang jatuh kepadanya. Tidak ada radiasi yang dapat keluar atau dipantulkannya. Namun demikian, dalam fisika klasik, secara teori benda hitam haruslah juga memancarkan seluruh panjang gelombang energi yang mungkin, karena hanya dari sinilah energi benda itu dapat diukur.
Meskipun namanya benda hitam, dia tidaklah harus benar-benar hitam karena dia juga memancarkan energi. Jumlah dan jenis radiasi elektromagnetik yang dipancarkannya bergantung pada suhu benda hitam tersebut. Benda hitam dengan suhu di bawah sekitar 700 Kelvin hampir semua energinya dipancarkan dalam bentuk gelombang inframerah, sangat sedikit dalam panjang gelombang tampak. Semakin tinggi temperatur, semakin banyak energi yang dipancarkan dalam panjang gelombang tampak dimulai dari merah, jingga, kuning dan putih.
Istilah "benda hitam" pertama kali diperkenalkan oleh Gustav Robert Kirchhoff pada tahun 1862. Cahaya yang dipancarkan oleh benda hitam disebut radiasi benda hitam.Dalam laboratorium, benda yang paling mendekati radiasi benda hitam adalah radiasi dari sebuah lubang kecil pada sebuah rongga. Cahaya apa pun yang memasuki lubang ini akan dipantulkan dan energinya diserap oleh dinding-dinding rongga berulang kali, tanpa mempedulikan bahan dinding dan panjang gelombang radiasi yang masuk (selama panjang gelombang tersebut lebih kecil dibandingkan dengan diameter lubang). Lubang ini (bukan rongganya) adalah pendekatan dari sebuah benda hitam. Jika rongga dipanaskan, spektrum yang dipancarkan lubang akan merupakan spektrum kontinu dan tidak bergantung pada bahan pembuat rongga. Pancaran radiasinya mengikuti suatu kurva umum (lihat gambar). Berdasarkan hukum radiasi termal dari Kirchhoff kurva ini hanya bergantung pada suhu dinding rongga, dan setiap benda hitam akan mengikuti kurva ini.
Spektrum yang teramati tidak dapat dijelaskan dengan teori elektromagnetik klasik dan mekanika statistik. Teori ini meramalkan intensitasi yang tinggi pada panjang gelombang rendah (yaitu, frekuensi tinggi); suatu ramalan yang dikenal sebagai bencana ultraungu.
Masalah teoretis ini dipecahkan oleh Max Planck, yang menganggap bahwa radiasi elektromagnetik dapat merambat hanya dalam paket-paket, atau kuanta (lihat bencana ultraungu untuk rinciannya). Gagasan ini belakangan digunakan oleh Einstein untuk menjelaskan efek fotolistrik. Perkembangan teoretis ini akhirnya menyebabkan digantikannya teori elektromagnetik klasik dengan mekanika kuantum. Saat ini, paket-paket tersebut disebut foton.

Sumber Bacaan : Wikipedia Indonesia.

Efek fotolistrik

Efek fotolistrik adalah pengeluaran elektron dari suatu permukaan (biasanya logam) ketika dikenai, dan menyerap, radiasi elektromagnetik(seperti cahaya tampak dan radiasi ultraungu) yang berada di atas frekuensi ambang tergantung pada jenis permukaan. Istilah lama untuk efek fotolistrik adalah efek Hertz (yang saat ini tidak digunakan lagi).Tidak ada elektron yang dilepaskan oleh radiasi di bawah frekuensi ambang, karena elektron tidak mendapatkan energi yang cukup untuk mengatasi ikatan atom. Elektron yang dipancarkan biasanya disebut fotoelektron dalam banyak buku pelajaran.
Efek fotolistrik banyak membantu
penduaan gelombang-partikel, dimana sistem fisika (seperti foton dalam kasus ini) dapat menunjukkan kedua sifat dan kelakuan seperti-gelombang dan seperti-partikel, sebuah konsep yang banyak digunakan oleh pencipta mekanika kuantum. Efek fotolistrik dijelaskan secara matematis oleh Albert Einstein yang memperluas kuanta yang dikembangkan oleh Max Planck.Pada tahun 1899, Joseph John Thomson meneliti cahaya ultraungu dalam tabung sinar katoda. Dipengaruhi oleh kerja James Clerk Maxwell, Thomson menyimpulkan bahwa sinar katoda terdiri atas partikel-partikel bermuatan negatif, yang dia sebut corpuscles (belakangan disebut "elektron"). Dalam penelitian tersebut, Thomson menempatkan pelat logam (yaitu, katoda) dalam tabung hampa, dan menyinarinya dengan radiasi frekuensi tinggi.

Sumber Bacaan : Wikipedia Indonesia.

Semikonduktor

Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara insulator dan konduktor. Sebuah semikonduktor bersifat sebagai insulator pada temperatur yang sangat rendah, namun pada temperatur ruangan besifat sebagai konduktor. Bahan semikonduksi yang sering digunakan adalah silikon, germanium, dan gallium arsenide.
Semikonduktor sangat berguna dalam
bidang elektronik, karena konduktansinya yang dapat diubah-ubah dengan menyuntikkan materi lain (biasa disebut materi doping).
Untuk informasi bagaimana semikonduktor digunakan sebagai
alat elektronik, lihat alat semikonduktor.
Salah satu alasan utama kegunaan semikonduktor dalam elektronik adalah sifat elektroniknya dapat diubah banyak dalam sebuah cara terkontrol dengan menambah sejumlah kecil ketidakmurnian. Ketidakmurnian ini disebut dopant.
Doping sejumlah besar ke semikonduktor dapat meningkatkan
konduktivitasnya dengan faktor lebih besar dari satu milyar. Dalam sirkuit terpadu modern, misalnya, polycrystalline silicon didop-berat seringkali digunakan sebagai pengganti logam.

Sumber Bacaan : Wikipedia Indonesia.

Struktur Kristal

Dalam mineralogi dan kristalografi, struktur kristal adalah suatu susunan khas atom-atom dalam suatu kristal. Suatu struktur kristal dibangun oleh sel unit, sekumpulan atom yang tersusun secara khusus, yang secara periodik berulang dalam tiga dimensi dalam suatu kisi. Spasi antar sel unit dalam segala arah disebut parameter kisi. Sifat simetri kristalnya terwadahi dalam gugus spasinya. Struktur dan simetri suatu emmainkan peran penting dalam menentukan sifat-sifatnya, seperti sifat pembelahan, struktur pita listrik, dan optiknya.Satu sel unit adalah susunan spatial atom-atom yang mengekor secara tiga dimensi untuk menggambarkan kristalnya. Posisi atom dalam sel unit digambarkan sebagai unit asimetri atau basis, sekumpulan posisi atom (xi,yi,zi) yang diukur dari suatu titik kisi.
Setiap struktur kristal memiliki sel unit konvensional yang biasanya dipilih agar kisi yang dihasilkan sesimetris mungkin. Meski begitu, sel unit konvensional tidak selalu pilihan terkecil yang mungkin. Suatu sel unit primitif dari suatu struktur kristal merupakan sel unit terkecil yang mungkin yang dapat dibangun, sehingga, ketika disusun, akan mengisi spasi/ruang secara sempurna.
Sel Wigner-Seitz adalah suatu sel primitif khas yang memiliki simetri yang sama dengan kisinya.

Sumber Bacaan : Wikipedia Indonesia.

Sunday, September 23, 2007

Termometer Infra Red

Termometer Infra Merah menawarkan kemampuan untuk mendeteksi temperatur secara optik – selama objek diamati, radiasi energi sinar infra merah diukur, dan disajikan sebagai suhu. Mereka menawarkan metode pengukuran suhu yang cepat dan akurat dengan objek dari kejauhan dan tanpa disentuh – situasi ideal dimana objek bergerak cepat, jauh letaknya, sangat panas, berada di lingkungan yang bahaya, dan/atau adanya kebutuhan menghindari kontaminasi objek (seperti makanan/alat medis/obat-obatan/produk atau test, dll.). Produk pengukur suhu infra merah tersedia di pasaran, Mulai dari yang fleksibel hingga fungsi-fungsi khusus/Termometer standar (seperti gambar), hingga sistem pembaca yang lebih komplek dan kamera pencitraan panas. Ini adalah citra/gambar dari termometer infra merah khusus industri yang digunakan memonitor suhu material cair untuk tujuan quality control pada proses manufaktur.
Termometers Infra Merah mengukur suhu menggunakan radiasi kotak hitam (biasanya infra merah) yang dipancarkan objek. Kadang disebut termometer laser jika menggunakan laser untuk membantu pekerjaan pengukuran, atau termometer tanpa sentuhan untuk menggambarkan kemampuan alat mengukur suhu dari jarak jauh. Dengan mengetahui jumlah energi infra merah yang dipancarkan oleh objek dan emisi nya, Temperatur objek dapat dibedakan.
Desain utama terdiri dari lensa pemfokus energi infra merah pada detektor, yang mengubah energi menjadi sinyal elektrik yang bisa ditunjukkan dalam unit temperatur setelah disesuaikan dengan variasi temperatur lingkungan. Konfigurasi fasilitas pengukur suhu ini bekerja dari jarak jauh tanpa menyentuh objek. Dengan demikian, termometer infra merah berguna mengukur suhu pada keadaan dimana termokopel atau sensor tipe lainnya tidak dapat digunakan atau tidak menghasilkan suhu yang akurat untuk beberapa keperluan.Beberapa kondisi umum adalah objek yang akan diukur dalam kondisi bergerak; objek dikelilingi medan elektromagnet, seperti pada pemanasan induksi; objek berada pada hampa udara atau atmosfir buatan; atau pada aplikasi di mana dibutuhkan respon yang cepat.
Termometers Infrared dapat digunakan untuk beberapa fungsi pengamatan temperatur. Beberapa contoh, antara lain:
• Mendeteksi awan untuk sistem operasi teleskop jarak jauh.
• Memeriksa peralatan mekanika atau kotak sakering listrik atau saluran hotspot
• Memeriksa suhu pemanas atau oven, untuk tujuan kontrol dan kalibrasi
• Mendeteksi titik api/menunjukkan diagnosa pada produksi papan rangkaian listrik
• Memeriksa titik api bagi pemadam kebakaran
• Memonitor proses pendinginan atau pemanasan material, untuk penelitian dan pengembangan atau quality control pada manufaktur
Ada beberapa jenis alat pengukur temperatur infra merah yang tersedia saat ini, termasuk desain konfigurasi untuk penggunaan fleksibel dan portabel, selain desain-desain khusus untuk fungsi tertentu pada posisi tetap dalam jangka waktu yang lama
Beberapa spesifikasi sensor portabel tersedia untuk pengguna rumahan termasuk tingkat keakuratannya (biasanya kurang lebih satu-dua derajad), plus beberapa derajad dibawahnya untuk pengukuran umum. Rasio Jarak:Titika Api (D:S) menunjukkan perbandingan diameter luas pengukuran panas dengan jarak alat terhadap permukaan objek. Contoh, apabila luas permukaan objek anda satu cm persegi dan anda tidak dapat lebih dekat daripada 12 cm ke objek, anda membutuhkan sensor dengan D:S 12:1 atau lebih. Fungsi yang lain ialah ada sensor yang memakai emisivitas konstan ada pula yang harus diatur. Untuk yang konstan, anda tidak dapat mengatur keakuratan pembacaan pada permukaan yang terang (sebagian besar sensor dirancang untuk permukaan gelap). Sensor emitivitas konstan dapat dipakai pada permukaan terang hanya dengan menambahkan pita gelap pada permukaan benda atau mengecatnya.Variasi sensor yang umum termasuk: • Termometers Infra Merah Titik, disebut juga Pyrometer Infra Merah, didesain untuk memonitor luasan sempit atau titik tertentu.
Gambar di atas menunjukkan hasil “Sistem Pencitraan Garis” untuk mengukur suhu permukaan dapur pembakar semen.
• Sistem Pencitraan Garis Infra Merah, biasanya membantu menentukan titik api yang penting pada pencerminan putar, untuk secara terus-menerus memindai permukaan yang luas pada ruang. Alat ini banyak digunakan pada manufaktur yang melibatkan konveyer atau proses jaring-jaring, seperti lembaran kaca besar atau logam yang keluar dari tungku, pabrik dan kertas, atau tumpukan material yang terus menerus sepanjang sabuk konveyer.
• Kamera Infra Merah, Termometer infra merah yang didesain khusus sebagai kamera, memonitor banyak titik pada saat yang sama, hasilnya berupa gambar 2 dimensi, di mana tiap pixel menunjukkan temperatur. Teknologi ini umumnya membutuhkan banyak prosesor dan software daripada sistem sebelumnya, digunakan memindai area yang luas. Aplikasi yang umum termasuk untuk memonitor batas negara bagi militer, pengawasan kualitas pada proses manufaktur, dan pengawasan peralatan atau ruang kerja yang panas/dingin untuk tujuan keselamatan dan pemeliharaan.


Sumber Bacaan : Wikipedia Indonesia.

Sinar alpha, Beta dan Gamma

Partikel Alpha (dinamakan sesuai huruf pertama pada abjad Yunani, α) adalah bentuk radiasi partikel yang sangat menyebabkan ionisasi, dan kemampuan penetrasinya rendah. Partikel tersebut terdiri dari dua buah proton dan dua buah neutron yang terikat menjadi sebuah partikel yang identik dengan nukleus helium, dan karenanya dapat ditulis juga sebagai He2+.
Partikel Alpha dipancarkan oleh nuklei yang
radioaktif seperti uranium atau radium dalam proses yang disebut dengan peluruhan alpha. Kadang-kadang proses ini membuat nukleus berada dalam excited state dan akan memancarkan sinar gamma untuk membuang energi yang lebih.
Setelah partikel alpha dipancarkan,
massa atom elemen yang memancarkan akan turun kira-kira sebesar 4 amu. Ini dikarenakan oleh hilangnya 4 nukleon. Nomor atom dari atom yang bersangkutan turun 2, karena hilangnya 2 proton dari atom tersebut, menjadikannya elemen yang baru. Contohnya adalah radium yang menjadi gas radon karena peluruhan alpha.Sinar gamma (seringkali dinotasikan dengan huruf Yunani gamma, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.
Partikel Beta adalah elektron atau positron yang berenergi tinggi yang dipancarkan oleh beberapa jenis nukleus radioaktif seperti kalium-40. Partikel beta yang dipancarkan merupakan bentuk radiasi yang menyebabkan ionisasi, yang juga disebut sinar beta. Produksi partikel beta disebut juga peluruhan beta.
Terdapat dua macam peluruhan beta, β− and β+, yang masing-masing adalah
elektron dan positron.
Sinar gamma membentuk
spektrum elektromagnetik energi-tertinggi. Mereka seringkali didefinisikan bermulai dari energi 10 keV/ 2,42 EHz/ 124 pm, meskipun radiasi elektromagnetik dari sekitar 10 keV sampai beberapa ratus keV juga dapat menunjuk kepada sinar X keras. Penting untuk diingat bahwa tidak ada perbedaan fisikal antara sinar gamma dan sinar X dari energi yang sama -- mereka adalah dua nama untuk radiasi elektromagnetik yang sama, sama seperti sinar matahari dan sinar bulan adalah dua nama untuk cahaya tampak. Namun, gamma dibedakan dengan sinar X oleh asal mereka. Sinar gamma adalah istilah untuk radiasi elektromagnetik energi-tinggi yang diproduksi oleh transisi energi karena percepatan elektron. Karena beberapa transisi elektron memungkinkan untuk memiliki energi lebih tinggi dari beberapa transisi nuklir, ada penindihan antara apa yang kita sebut sinar gamma energi rendah dan sinar-X energi tinggi.
Sinar gamma merupakan sebuah bentuk
radiasi mengionisasi; mereka lebih menembus dari radiasi alpha atau beta (keduanya bukan radiasi elektromagnetik), tapi kurang mengionisasi.
Perlindungan untuk sinar γ membutuhkan banyak massa. Bahan yang digunakan untuk perisai harus diperhitungkan bahwa sinar gamma diserap lebih banyak oleh bahan dengan
nomor atom tinggi dan kepadatan tinggi. Juga, semakin tinggi energi sinar gamma, makin tebal perisai yang dibutuhkan. Bahan untuk menahan sinar gamma biasanya diilustrasikan dengan ketebalan yang dibutuhkan untuk mengurangi intensitas dari sinar gamma setengahnya. Misalnya, sinar gamma yang membutuhkan 1 cm (0,4 inchi) "lead" untuk mengurangi intensitasnya sebesar 50% jujga akan mengurangi setengah intensitasnya dengan konkrit 6 cm (2,4 inchi) atau debut paketan 9 cm (3,6 inchi).
Sinar gamma dari
fallout nuklir kemungkinan akan menyebabkan jumlah kematian terbesar dalam penggunaan senjata nuklir dalam sebuah perang nuklir. Sebuah perlindungan fallout yang efektif akan mengurangi terkenanya manusia 1000 kali.
Sinar gamma memang kurang
mengionisasi dari sinar alpha atau beta. Namun, mengurangi bahaya terhadap manusia membutuhkan perlindungan yang lebih tebal. Mereka menghasilkan kerusakan yang mirip dengan yang disebabkan oleh sinar-X, seperti terbakar, kanker, dan mutasi genetika.
Dalam hal ionisasi, radiasi gamma berinteraksi dengan bahan melalui tiga proses utama:
efek fotoelektrik, penyebaran Compton, dan produksi pasangan.

Sinar X

Sinar-X adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 picometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medikal dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.
Röntgen atau Roentgen (disimbolkan dengan R) adalah sebuah satuan pengukuran radiasi ion di udara (berupa sinar X atau sinar gamma), yang dinamai sesuai dengan nama fisikawan Jerman Wilhelm Röntgen. Röntgen adalah jumlah radiasi yang dibutuhkan untuk menghantarkan muatan positif dan negatif dari 1 satuan elektrostatik muatan listrik dalam 1 cm³ udara pada suhu dan tekanan standar. Ini setara dengan upaya untuk menghasilkan sekitar 2.08×109 pasang ion.
Dalam
sistem SI, 1 R = 2.58×10−4 C/kg. Dosis 500 R dalam 5 jam berbahaya bagi manusia. Dalam keadaan atmosfer standar (kepadatan udara ~1.293 kg/m³) dan menggunakan energi ionisasi udara 36.16 J/C, akan didapat 1 R ≈ 9.330 mGy, atau 1 Gy ≈ 107.2 R.Radiologi adalah ilmu kedokteran untuk melihat bagian dalam tubuh manusia menggunakan pancaran atau radiasi gelombang, baik gelombang elektromagnetik maupun gelombang mekanik. Pada awalnya frekuensi yang dipakai berbentuk sinar-x (x-ray) namun kemajuan teknologi modern memakai pemindaian (scanning) gelombang sangat tinggi (ultrasonic) seperti ultrasonography (USG) dan juga MRI (magnetic resonance imaging).Wilhelm Conrad Röntgen (27 Maret 1845 – 10 Februari 1923) ialah fisikawan Jerman yang merupakan penerima pertama Penghargaan Nobel dalam Fisika, pada 1901, untuk penemuannya pada sinar X, yang menggembar-gemborkan zaman fisika modern dan merevolusionerkan kedokteran diagnostik.
Rontgen belajar politeknik di Zurich dan kemudian guru besar fisika di Universitas Strasbourg (1876-79), Giessen (1879-88), Wurzburg (1888-1900), dan Munich (1900-20). Penelitiannya juga termasuk karya pada elastisitas, gerak pipa rambut pada fluida, panas gas tertentu, konduksi panas pada kristal, penyerapan panas oleh gas, dan piezoelektrisitas.
Pada 1895, saat mengadakan percobaan dengan aliran arus listrik dan tabung gelas yang dikosongkan sebagian (tabung sinar katode), Rontgen mengamati bahwa potongan barium platinosianida yang berdekatan melepaskan sinar saat tabung itu dioperasikan. Ia merumuskan teori bahwa saat sinar katode (elektron) menembus dinding gelas tabung, beberapa radiasi yang tak diketahui terbentuk yang melintasi ruangan, menembus bahan kimia, dan menyebabkan fluoresensi. Pengamatan lebih lanjut mengungkapkan bahwa kertas, kayu, dan aluminum, di antara bahan lain, transparan pada bentuk baru radiasi ini. Ia menemukan bahwa itu mempengaruhi plat fotografi, dan, sejak tidak secara nyata menunjukkan beberapa sifat cahaya, seperti refleksi atau refraksi, secara salah ia berpikir bahwa sinar itu tak berhubungan pada cahaya. Dalam pandangan pada sifat tak pasti itu, ia menyebut fenomena radiasi X, walau juga dikenal sebagai radiasi Rontgen. Ia mengambil fotografi sinar-X pertama, dari bagian dalam obyek logam dan tulang tangan istrinya.

Saturday, September 22, 2007

Laser

Laser (singkatan dari bahasa Inggris : Light Amplification by Stimulated Emission of Radiation) adalah sebuah alat yang menggunakan efek mekanika kuantum, pancaran terstimulasi, untuk menghasilkan sebuah cahaya yang koherens dari medium "lasing" yang dikontrol kemurnian, ukuran, dan bentuknya. Pengeluaran dari laser dapat berkelanjutan dan dengan amplituda-konstan (dikenal sebagai CW atau gelombang berkelanjutan), atau detak, dengan menggunak teknik Q-switching, modelocking, atau gain-switching.
Dalam operasi detak, banyak daya puncak yang lebih tinggi dapat dicapai. Sebuah medium laser juga dapat berfungsi sebagai
amplifier optikal ketika di-seed dengan cahaya dari sumber lainnya. Signal yang diperkuat dapat menjadi sangat mirip dengan signal input dalam istilah panjang gelombang, fase, dan polarisasi; Ini tentunya penting dalam komunikasi optikal. Kata kerja "lase" berarti memproduksi cahaya koherens, dan merupakan pembentukan-belakang dari istilah laser.
Sumber cahaya umum, seperti bola lampu incandescent, memancarkan foton hampir ke seluruh arah, biasanya melewati spektrum elektromagnetik dari panjang gelombang yang luas. Banyak sumber cahaya juga incoherens; yaitu, tidak ada hubungan fase tetap antara foton yang dipancarkan oleh sumber cahaya. Secara kontras, laser biasanya memancarkan foton dalam cahaya yang sempit, dijelaskan-baik, terpolarisasi, sinar koherens mendekati-monokromatik, terdiri dari panjang gelombang tunggal atau warna.
Beberapa jenis laser, seperti laser dye dan laser vibronik benda-padat (vibronic solid-state lasers) dapat memproduksi cahaya lewat jangka lebar gelombang; properti ini membuat mereka cocok untuk penciptaan detak singkat sangat pendek dari cahaya, dalam jangka femtodetik (10-15 detik). Banyak teori
mekanika kuantum dan termodinamika dapat digunakan kepada aksi laser (lihat ilmu laser), meskipun nyatanya banyak jenis laser ditemukan dengan cara trial and error.
Dioda laser adalah sejenis laser di mana media aktifnya sebuah semikonduktor persimpangan p-n yang mirip dengan yang terdapat pada dioda pemancar cahaya. Dioda laser kadang juga disingkat LD atau ILD.
Dioda laser baru ditemukan pada akhir abad ini oleh ilmuwan
Universitas Harvard. Prinsip kerja dioda ini sama seperti dioda lainnya yaitu melalui sirkuit dari rangkaian elektronika, yang terdiri dari jenis p dan n. Pada kedua jenis ini sering dihasilkan 2 tegangan, yaitu:
biased forward, arus dihasilkan searah dengan nilai 0,707 utk pembagian v puncak, bentuk gelombang di atas ( + ).
backforward biased, ini merupakan tegangan berbalik yang dapat merusak suatu komponen elektronika.


Sumber Bacaan : Wikipedia Indonesia.







Black Hole

Lubang hitam adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar. Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga 8 kecepatan lepas di dekatnya mendekati kecepatan cahaya. Tak ada sesuatu, termasuk radiasi elektromagnetik yang dapat lolos dari gravitasinya, bahkan cahaya hanya dapat masuk tetapi tidak dapat keluar atau melewatinya, dari sini diperoleh kata "hitam". Istilah "lubang hitam" telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali. Secara teoritis, lubang hitam dapat memliki ukuran apa pun, dari mikroskopik sampai ke ukuran alam raya yang dapat diamati.
Teori adanya lubang hitam pertama kali diajukan pada abad ke-18 oleh John Michell and Pierre-Simon Laplace, selanjutnya dikembangkan oleh astronom Jerman bernama Karl Schwarzschild, pada tahun 1916, dengan berdasar pada teori relativitas umum dari Albert Einstein, dan semakin dipopulerkan oleh Stephen William Hawking. Pada saat ini banyak astronom yang percaya bahwa hampir semua galaksi dialam semesta ini mengelilingi lubang hitam pada pusat galaksi.
Adalah
John Archibald Wheeler pada tahun 1967 yang memberikan nama "Lubang Hitam" sehingga menjadi populer di dunia bahkan juga menjadi topik favorit para penulis fiksi ilmiah. Kita tidak dapat melihat lubang hitam akan tetapi kita bisa mendeteksi materi yang tertarik / tersedot ke arahnya. Dengan cara inilah, para astronom mempelajari dan mengidentifikasikan banyak lubang hitam di angkasa lewat observasi yang sangat hati-hati sehingga diperkirakan di angkasa dihiasi oleh jutaan lubang hitam.
Lubang Hitam tercipta ketika suatu obyek tidak dapat bertahan dari kekuatan tekanan gaya gravitasinya sendiri. Banyak obyek (termasuk matahari dan bumi) tidak akan pernah menjadi lubang hitam. Tekanan gravitasi pada matahari dan bumi tidak mencukupi untuk melampMassa dari lubang hitam terus bertambah dengan cara menangkap semua materi didekatnya. Semua materi tidak bisa lari dari jeratan lubang hitam jika melintas terlalu dekat. Jadi obyek yang tidak bisa menjaga jarak yang aman dari lubang hitam akan tersedot. Berlainan dengan reputasi yang disandangnya saat ini yang menyatakan bahwa lubang hitam dapat menyedot apa saja disekitarnya, lubang hitam tidak dapat menyedot material yang jaraknya sangat jauh dari dirinya. dia hanya bisa menarik materi yang lewat sangat denkat dengannya. Contoh : bayangkan matahari kita menjadi lubang hitam dengan massa yang sama. Kegelapan akan menyelimuti bumi dikarenakan tidak ada pancaran cahaya dari lubang hitam, tetapi bumi akan tetap mengelilingi lubang hitam itu dengan jarak dan kecepatan yang sama dengan saat ini dan tidak tersedot masuk kedalamnya. Bahaya akan mengancam hanya jika bumi kita berjarak 10 mil dari lubang hitam, dimana hal ini masih jauh dari kenyataan bahwa bumi berjarak 93 juta mil dari matahari. Lubang hitam juga dapat bertambah massanya dengan cara bertubrukan dengan lubang hitam yang lain sehingga menjadi satu lubang hitam yang lebih besar.aui kekuatan atom dan nuklir dalam dirinya yang sifatnya melawan tekanan gravitasi. Tetapi sebaliknya untuk obyek yang bermassa sangat besar, tekanan gravitasi-lah yang menang.

Sumber Bacaan : Wikipedia Indonesia

Friday, September 21, 2007

Gerhana Bulan

Gerhana Bulan terjadi saat sebagian atau keseluruhan penampang bulan tertutup oleh bayangan bumi. Itu terjadi bila bumi berada di antara matahari dan bulan pada satu garis lurus yang sama, sehingga sinar matahari tidak dapat mencapai bulan karena terhalangi oleh bumi.
Dengan penjelasan lain, gerhana bulan muncul bila bulan sedang beroposisi dengan
matahari. Tetapi karena kemiringan bidang orbit bulan terhadap bidang ekliptika, maka tidak setiap oposisi bulan dengan matahari akan mengakibatkan terjadinya gerhana bulan. Perpotongan bidang orbit bulan dengan bidang ekliptika akan memunculkan 2 buah titik potong yang disebut node, yaitu titik di mana bulan memotong bidang ekliptika. Gerhana bulan ini akan terjadi saat bulan beroposisi pada node tersebut. Bulan membutuhkan waktu 29,53 hari untuk bergerak dari satu titik oposisi ke titik oposisi lainnya. Maka seharusnya, jika terjadi gerhana bulan, akan diikuti dengan gerhana matahari karena kedua node tersebut terletak pada garis yang menghubungkan antara matahari dengan bumi.
Sebenarnya, pada peristiwa gerhana bulan, seringkali bulan masih dapat terlihat. Ini dikarenakan masih adanya sinar matahari yang dibelokkan ke arah bulan oleh
atmosfer bumi. Dan kebanyakan sinar yang dibelokkan ini memiliki spektrum cahaya merah. Itulah sebabnya pada saat gerhana bulan, bulan akan tampak berwarna gelap, bisa berwarna merah tembaga, jingga, ataupun coklat.
Gerhana bulan dapat diamati dengan mata telanjang dan tidak berbahaya sama sekali.
Gerhana bulan total
Pada gerhana ini, bulan akan tepat berada pada daerah
umbra.

Gerhana bulan sebagian
Pada gerhana ini, tidak seluruh bagian bulan terhalangi dari matahari oleh bumi. Sedangkan sebagian permukaan bulan yang lain berada di daerah
penumbra. Sehingga masih ada sebagian sinar matahari yang sampai ke permukaan bulan.

Gerhana bulan penumbra
Pada gerhana ini, seluruh bagian bulan berada di bagian penumbra. Sehingga bulan masih dapat terlihat dengan warna yang suram.
Sumber Bacaan : Wikipedia Indonesia.

Aurora

Aurora adalah fenomena pancaran cahaya yang menyala-nyala pada lapisan ionosfer dari sebuah planet sebagai akibat adanya interaksi antara medan magnetik yang dimiliki planet tersebut dengan partikel bermuatan yang dipancarkan oleh matahari (angin matahari).
Di
bumi, aurora terjadi di daerah di sekitar kutub Utara dan kutub Selatan magnetiknya. Aurora yang terjadi di daerah sebelah Utara dikenal dengan nama Aurora Borealis, yang dinamai bersempena Dewi Fajar Rom, Aurora, dan nama Yunani untuk angin utara, Boreas.
Ini karena di Eropa ia kerap dilihat kemerah-merahan di ufuk utara seolah-olah matahari akan terbit dari arah tersebut. Aurora borealis selalu terjadi di antara September dan Oktober dan Maret dan April. Fenomena aurora di sebelah Selatan yang dikenal dengan Aurora Australis mempunyai sifat-sifat yang serupa.

Sumber Bacaan : Wikipedia Indonesia.

Thursday, September 20, 2007

Tenaga Air

Tenaga air (Inggris: hydropower) adalah energi yang diperoleh dari air yang mengalir. Pada dasarnya, air di seluruh permukaan Bumi ini bergerak (mengalir). Di alam sekitar kita, kita mengetahui bahwa air memiliki siklus. Dimana air menguap, kemudian terkondensasi menjadi awan. Air akan jatuh sebagai hujan setelah ia memiliki massa yang cukup. Air yang jatuh di dataran tinggi akan terakumulasi menjadi aliran sungai. Aliran sungai ini menuju ke laut.
Di laut juga terdapat gerakan air, yaitu gelombang pasang,ombak, dan arus laut. gelombang pasang dipengaruhi oleh gravitasi bulan, sedangkan ombak disebabkan oleh angin yang berhembus di permukaan laut dan arus laut di sebabkan oleh perbedan kerapatan (massa jenis air), suhu dan tekanan, serta rotasi bumi.
Tenaga air yang memanfaatkan gerakan air biasanya didapat dari sungai yang dibendung. Pada bagian bawah dam tersebut terdapat lubang-lubang saluran air. Pada lubang-lubang tersebut terdapat turbin yang berfungsi mengubah energi kinetik dari gerakan air menjadi energi listrik. Energi listrik yang berasal dari energi kinetik air disebut "hydroelectric". Hydroelectric ini menyumbang sekitar 715.000 MW atau sekitar 19% kebutuhan listrik dunia. bahkan di Kanada, 61% dari kebutuhan listrik negara berasal dari Hydroelectric.
Saat ini para peneliti juga mencari kemungkinan hydroelectric yang berasal dari arus laut dan gelombang pasang. Semoga hal tersebut berhasil dan kita dapat memelihara Bumi yang kita cintai ini.


Sumber Bacaan : Wikipedia Indonesia.

Wednesday, September 19, 2007

Bio Gas

Biogas adalah gas yang dihasilkan oleh aktifitas anaerobik atau fermentasi dari bahan-bahan organik termasuk diantaranya; kotoran manusia dan hewan, limbah domestik (rumah tangga), sambah biodegradable atau setiap limbah organik yang biodegradable dalam kondisi anaerobik. Kandungan utama dalam biogas adalah metana dan karbon dioksida.
Biogas dapat digunakan sebagai bahan bakar kendaraan maupun untuk menghasilkan listrik.
Biogas yang dihasilkan oleh aktifitas anaerobik sangat populer digunakan untuk mengolah limbah biodegradable karena bahan bakar dapat dihasilkan sambil menghancurkan bakteri patogen dan sekaligus mengurangi volume limbah buangan. Metana dalam biogas, bila terbakar akan relatif lebih bersih daripada batu bara, dan menghasilkan energi yang lebih besar dengan emisi karbon dioksida yang lebih sedikit.


Pemanfaatan biogas memegang peranan penting dalam manajemen limbah karena metana merupakan gas rumah kaca yang lebih berbahaya dalam pemanasan global bila dibandingkan dengan karbon dioksida. Karbon dalam biogas merupakan karbon yang diambil dari atmosfer oleh fotosintesis tanaman, sehingga bila dilepaskan lagi ke atmosfer tidak akan menambah jumlah karbon diatmosfer bila dibandingkan dengan pembakaran bahan bakar fosil.

Saat ini, banyak negara maju meningkatkan penggunaan biogas yang dihasilkan baik dari limbah cair maupun limbah padat atau yang dihasilkan dari sistem pengolahan biologi mekanis pada tempat pengolahan limbah.


Gas landfill adalah gas yang dihasilkan oleh limbah padat yang dibuang di landfill. Sampah ditimbun dan ditekan secara mekanik dan tekanan dari lapisan diatasnya. Karena kondisinya menjadi anaerobik, bahan organik tersebut terurai dan gas landfill dihasilkan. Gas ini semakin berkumpul untuk kemudian perlahan-lahan terlepas ke atmosfer. Hal ini menjadi berbahaya karena:
1. dapat menyebabkan ledakan,
2. pemanasan global melalui metana yang merupakan gas rumah kaca, dan
3. material organik yang terlepas (volatile organic compounds) dapat menyebabkan (photochemical smog) .


Komposisi biogas bervariasi tergantung dengan asal proses anaerobik yang terjadi. Gas landfill memiliki konsentrasi metana sekitar 50%, sedangkan sistem pengolahan limbah maju dapat menghasilkan biogas dengan 55-75%CH4 .

Nilai kalori dari 1 meter kubik Biogas sekitar 6.000 watt jam yang setara dengan setengah liter minyak diesel. Oleh karena itu Biogas sangat cocok digunakan sebagai bahan bakar alternatif yang ramah lingkungan pengganti minyak tanah, LPG, butana, batu bara, maupun bahan-bahan lain yang berasal dari fosil.

Limbah biogas, yaitu kotoran ternak yang telah hilang gasnya (slurry) merupakan pupuk organik yang sangat kaya akan unsur-unsur yang dibutuhkan oleh tanaman. Bahkan, unsur-unsur tertentu seperti protein, selulose, lignin, dan lain-lain tidak bisa digantikan oleh pupuk kimia. Pupuk organik dari biogas telah dicobakan pada tanaman jagung, bawang merah dan padi.

Dalam beberapa kasus, gas landfill mengandung siloksan. Selama proses pembakaran, silikon yang terkandung dalam siloksan tersebut akan dilepaskan dan dapat bereaksi dengan oksigen bebas atau elemen-elemen lain yang terkandung dalam gas tersebut. Akibatnya akan terbentuk deposit (endapan) yang umumnya mengandung silika (SiO2) atau silikat (SixOy) , tetapi deposit tersebut dapat juga mengandung kalsium, sulfur belerang, zinc (seng), atau fosfor. Deposit-deposit ini (umumnya berwarna putih) dapat menebal hingga beberapa millimeter di dalam mesin serta sangat sulit dihilangkan baik secara kimiawi maupun secara mekanik.

Pada internal combustion engines (mesin dengan pembakaran internal), deposit pada piston dan kepala silinder bersifat sangat abrasif, hingga jumlah yang sedikit saja sudah cukup untuk merusak mesin hingga perlu perawatan total pada operasi 5.000 jam atau kurang. Kerusakan yang terjadi serupa dengan yang diakibatkan karbon yang timbul selama mesin diesel bekerja ringan. Deposit pada turbin dari turbocharger akan menurukan efisiensi charger tersebut.
Stirling engine lebih tahan terhadap siloksan, walaupun deposit pada tabungnya dapat mengurangi efisiensi.
Sumber Bacaan : Wikipedia Indonesia.

Energi Gelombang Laut

Energi gelombang adalah jenis energi yang bisa diperoleh dengan memanfaatkan gelombang laut.

Teknologi terbaru ini menggunakan istilah Permanent Magnet Linear Buoy (bahasa Indonesia : Pelampung Magnet Pemanen Linier). Teknologi yang sudah dipakai oleh kota Portland di Amerika Serikat dan merupakan ciptaan para insinyur dari Universitas Oregon ini, selain memasok listrik, juga mampu mendorong pertumbuhan kehidupan laut. Selain itu tidak ada emisi gas buang CO2, tidak ada polusi suara, tidak ada polusi visual.

Sistem pelampung ini dapat menghasilkan daya hanya dengan mengapungkannya di permukaan lautan yang bergelombang. Sistem ini diletakkan kurang lebih satu atau dua mil laut dari pantai, yang disebut sebagai permanent magnet linear generator buoy. Koil elektrik mengelilingi batang magnet di dalam pelampung dan koil tersebut ditempelkan pada pelampung, batang magnet dikaitkan ke dasar laut. Saat ombak mencapai pelampung, maka pelampung tersbut akan bergerak naik dan turun secara relatif terhadap batang magnet yang menimbukan beda potensial dan listrik dibangkitkan.

Berdasarkan hasil penelitian dari Universitas Oregon, setiap pelampung mampu menghasilkan daya sebesar 250 kilowatt dan teknologi ini dapat digunakan dalam skala kecil ataupun besar tergantung kepada energi yang dibutuhakan. Ada beberapa pilihan untuk menghasilkan daya tersebut, penjelasan diatas menggunakan teknik koil yang bergerak naik turun, tetapi bisa juga dengan teknik batang magnet yang bergerak naik turun. Penempatan koil dan batang magnet bisa juga ditempatkan didasar atau dipermukaan laut.

Tehnologi gelombang yang beroperasi di Basis Korps Marinir AS Hawaii, Pulau Oahu
Dibandingkan dengan teknologi hijau lainnya seperti energi matahari dan angin, energi gelombang ini memberikan ketersedian mencapai 90% dengan kawasan yang potensial tidak terbatas, selama ada ombak, energi listrik bisa didapat.

Di samping nilai ekonomis yang cukup menjanjikan ada hal-hal lain yang dapat memberikan keuntungan di bidang lingkungan hidup. Disebutkan diatas bahwa teknologi ini tidak menimbulkan polusi suara, emisi CO2, maupun polusi visual dan sekaligus mampu memberikan ruang kepada kehidupan laut untuk membentuk koloni terumbu karang di sepanjang jangkar yang ditanam di dasar laut. Hal ini akan mengakibatkan berkumpulnya ikan dan binatang laut lain.
Sumber Bacaan : Wikipedia Indonesia.